a2 United States Patent

Gioulekas et al.

US009252811B2

US 9,252,811 B2
Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

TIME-VARYING LOW-DENSITY
PARITY-CHECK CONVOLUTIONAL CODES

Inventors: Fotios Gioulekas, Palamas (GR);
Constantinos Petrou, Athens (GR);
Michael Birbas, Patras (GR)

Assignee: ANALOGIES SA, Patras (GR)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 516 days.

Appl. No.: 13/490,940

Filed: Jun. 7,2012
Prior Publication Data
US 2013/0061117 Al Mar. 7, 2013

Related U.S. Application Data

Provisional application No. 61/494,006, filed on Jun.
7,2011.

(58) Field of Classification Search
CPC HO3M 13/1154; HO3M 13/23; HO3M
13/1171; HO3M 13/616; GOGF 11/10
.......... 714/785, E11.032, 702, 799, 786, 755,
714/801, 781
See application file for complete search history.

USPC

(56) References Cited
U.S. PATENT DOCUMENTS

8,271,851 B2 *
8,732,545 B2 *

9/2012 Doreetal.ccccveninn. 714/758
5/2014 Murakami 714/758

* cited by examiner

Primary Examiner — Phung M Chung
(74) Attorney, Agent, or Firm — Franco S. De Liguori

(57) ABSTRACT

The present disclosure is directed to communication systems
and more specifically to communication devices having
encoder and/or decoder blocks employing Low Density Par-
ity Check Convolutional Codes (LDPC CCs). According to
exemplary embodiments, improved LDPC CC techniques are

Int. CL. disclosed to construct the syndrome former of an LDPC-CC
HO3M 13/13 (2006.01) code in a systematic way based on desired Rate (b/c),
HO3M 13/11 (2006.01) Memory (m,) and Period (T) while achieving specific Degree
HO3M 13/03 (2006.01) Distribution (dv and dc), Girth, and ACE constraints (0, g,
U.S. CL d) for a desired configuration.
CPC ... HO3M 13/1154 (2013.01); HO3M 13/036
(2013.01); HO3M 13/1171 (2013.01) 9 Claims, 20 Drawing Sheets
100
CONTROLLER MEMORY Z
110 120

Coding rate bfc _ ' Y

Memory m

Period T .

i LDPC-CC Syndrome Former H7

Degree distribution

ACE {n.cp, dacel paramete{s
Girth

Construction Engine

A

US 9,252,811 B2

Sheet 1 of 20

Feb. 2, 2016

U.S. Patent

I E

-

L

$01

aubug uonzNAsSUOD

sy,

4

s

Yiuo

£

sipioweaed (F¥p %) 3oy

WHHINGHISIP sas8aq

&

1 poueg

A

Ut AJOLUBIA

ofq a1 Buipon

7 M 9WI04 SWoIpuAg IIAGT
N
P
et
/) AAOWAW
007

o1t
AHTTOUINOD

U.S. Patent Feb. 2, 2016

Sheet 2 of 20

US 9,252,811 B2

cx(c-b)

L)
1]
1)

Time
P

US 9,252,811 B2

Sheet 3 of 20

Feb. 2, 2016

U.S. Patent

RPN ORGSO U QNI PRS0 U o g U P

€ "Old

US 9,252,811 B2

Sheet 4 of 20

Feb. 2, 2016

U.S. Patent

(e oht2 Lo ot i Lo Ci Ll L (e
X122 20A1010.d IPON B|qelieA A_.s+: www _ _ i _ i _ Wi@i (1+1) H (@,wm_
D 17 I A N 2
ool I_I..._l..l_.l.._l..l_ _. . |— .. —
SN O AU FOROS HU VO HU N A
ol LA
vl A T
o m!.Li:_!i_ l—.. —
O i S R

e 201 0]
P —— I _l —
0

US 9,252,811 B2

Sheet 5 of 20

Feb. 2, 2016

U.S. Patent

G Old

1-(9-0)x(L+°w)-o

XUelAl —

2dA1010.4d SPON ¥28Y) (1) 21
L

US 9,252,811 B2

Sheet 6 of 20

Feb. 2, 2016

U.S. Patent

Ce e e s e e e s Emm s e e mmm EEm e Emm s st s — e— s e—EGeee=e

Lt mmm e s o 4 b e e b b e o e b m— ot 4 m— e o s

0o o)l _ _ _ _ _ _ _ [

(1+ Fw+

su

+1) 7

S IOUY TR EUUR DU NUUR R NI
TS PN EURU FURU S U S
9 'Ol RS E DO I U P
U DU PR A D
UL T U B
(e 2) s
(L+°w)-(g-0)x(L+°w)-0 §|_£ - 1— -
X1 9dA3030.4d ()%, (1) 5
3209 1u|BAIND3 SIH# -
—— e —
[]
[}
)

US 9,252,811 B2

Sheet 7 of 20

Feb. 2, 2016

U.S. Patent

(c-b)<(c-b)

H',(0)
cx(c-b)

rate 1/

cxe

FIG. 7

U.S. Patent Feb. 2, 2016 Sheet 8 of 20 US 9,252,811 B2

(Start)
| Step 1 | I
Define:

b,c,ms, T,dace,hace, dv,de,counter, NOT ¢

NOI =0 Matrix too dense.

Increase mg, decrease

sy Ny es T, change degree
[Sees] »~—NOI == NOT —=—=2_ T, change deg
Step 8 | \\\T/// distribution, relax ACE
parameters, or try more
Step 2 | v iterations

Fill H with required connections P ~~.

!

=0

-_Ste 3 —
. t__ ,/ Exit with -,

yes "_success /

~J

lno

Find row and column range in H'

t=tﬂ corresponding to the current period L_Step 4

L
Retrieve variable node degree for this
phase, dv(t)

dlio FIG. 8A

O—
\
A
i
\,
7
/
/
/
/
w
—
@
)
o

NOI = NOI+1 Load H
= 1]

yes — T
i == counter -

[Step 6 |\ no

Generate random
Generate forced connection

connections :L i=i+1
e No
< pass >

no - T Yy
<. pass > yes

Update H'

U.S. Patent Feb. 2, 2016 Sheet 9 of 20 US 9,252,811 B2

St FIG. 8B

300 — Load H', column range, b,c,m,, T,dacg, hace,d.,de
805 ‘
810 Randomly generate a column index in the
— column range

815)
Randomly generate a permutation index p«—[0 + (c-1
~_ vg P p—[0+(c-1)]

'

820 Define the cxc cell starting from the randomly
~ selected column index

825 ~ /L

Y88 _——""" Connection already exists ~ ~T——
A —_— in the cell o

R — 830

T no

Fill the cell with a p-times column-permuted cxc unit matrix.

T yes
e 850

yes -
bﬂ—b\/\\ Connection causes ACE constraint ovemde

- —
TTe— o
—— o

860 f 1o 055

S ™ - ™
(Fail. Exit) Pass. Exit C'/

~ /

. 7

U.S. Patent Feb. 2, 2016 Sheet 10 of 20 US 9,252,811 B2

9200
(Stat)
1 905
Load H', column range, b,c.m, T, dacg.hace, dv,de _/

l 910

Scan H' for check nodes with non-fulfilled degree distribution.)

il

e —
— T

915 — e no
&(\\Avallable check nodes exist ==
yes |
920 \‘ N = length of column range p I S
(Fail. Exit)
e 925 N
930
T T yes
- n=N =
10
94@\ Define the cxc cell starting from column | 935
index n o
n=n+1 1
e T 945
yes _— Connection already exists ~——.—"
T in the cell o
3 mo 950
p—U
yes /////—\\\\\ & —
¢ . p=c 4 p=p+1
T //; ;\ 955 1

Tiill the cell with a p-times column-permuted

960 -~ ¢x¢ unit matrix.

BN

— —
o ~—

_ ——Connection causes check degree—— _ yes '
965 T override o

— o

v 1o
ety T es
== Connection causes cycle of lengthj/>—Lb,
970 T ek
] no 980

" ACEcheckrequited —=

—_—

I ves 985
_/

I e
—— -~

— —— yes
—==__"Connection causes ACE constraint override_ ~—=

—_—

Ty mo FIG. 9

¥ Pass Exit)—— 990

U.S. Patent Feb. 2, 2016 Sheet 11 of 20 US 9,252,811 B2

H (1)=| T W™ (t)e GF (2')

FIG. 10A
rale 1/4 cxe
/ rate 1/2 cxe
0 0 0]k n/
H‘,(l) ([52 0 01]o Elz(t) — JO [}
cx(c-b) - o 0lo cx(eb) h‘: 0
o 0o Bdo
e GF(2')\{0}

FIG. 10B

U.S. Patent Feb. 2, 2016 Sheet 12 of 20 US 9,252,811 B2

(-
i
=

1105
Load cell to be updated (matrix elements), and v (GF size) _/

l no 1125
p—
Find the non-zero element of the ¢+ 1th row
of the cell

1130

-

Replace the non-zero element by a randomly generated feGF(2°)\{0}

. 1135

count = count +1 —/ FIG. 11

US 9,252,811 B2

Sheet 13 of 20

Feb. 2, 2016

U.S. Patent

U.S. Patent

Feb. 2, 2016 Sheet 14 of 20 US 9,252,811 B2
4 1300
[Start
\\ - /
Defi 1305
efine:
initial_codeword length, _/
maximum_codeword length,
step_size
load HT 1310
__/
C 1315
k = initial codeword length ,
[1325
1335 l 1320
Jno " \\\J\ yes | H' not suitable
Construct T —— iy s
H, ——__ k=max codeword length ~>—— for tailbiting
1l \\\\\ /////
1360
Calculate H'y,,, | 1340 T y 1330
the part of HY I/ . J P .
that must be k =lketstep_size [Exit with
invertible. | failure)
BN 1345 N J/
< (H'y,) " exists P
NG >
yes .
l -13/50 1355
Return k [Exit with \) FIG. 13

| success |
- . ;

~ 7

U.S. Patent Feb. 2, 2016 Sheet 15 of 20 US 9,252,811 B2
] 09¢=2u
*] | [| e | | 1 |
L) [L)
(] »]
L] L J »
) L) *
* * ()
L] L J L)
» * +*
* > *
* L] *
+ + +
* * +
L J L . J
& * &
» + +*
* +*
+ L)
L * +
L d * L]
20 + * L -
* . & *
+ & *
L . L)
L N
‘0’ "0 .+
* '+ . FIG. 14
+ L) »
» * 4
+* + +
+ * +
* * *
+ +* +
+ *
» + []
+ + *
+ * L
+ + *
ar * +* * -
* +
L A +
+ e +
* LJ »
+ * *
* +
e L)
+* * L
+ + *
+ LJ *
* () L)
* [] +
+ L
* - L 4
* * *
+ +
* + »
‘. ‘. .0
1] *> L » -
’t ‘t 't
* & L J
» L L
L) L) L
& L) *
- - »
. * .
L) L L)
. & L]
+ & L)
* [*
* * »
L) L J L]
+* . &
* : *
+* *
+ +* *
» > »
] * IS . -
* L) L)
» * L)
* * *
* L I
» » L)
» 4+ *
+* + *
+ * *
L) *
+ + +,
* * +*
+* +*
+* +» LJ
» + +
+ + *
L] +* []
L) L/ L)
Q-‘ * + - »
1M~ * +* L -
C-‘ 0‘ . +*
* 0‘.‘
+ + *
+* * +*
+* + *
+ * *
¥ L J +
L J * +*
* (]
+ + *
+ +* +
* * *
[] + L J
* +* +
* * +
0' L J *
120 = |] k J | 1] ?0 | T* =
1] 10 1] - 1} 40 =0 -1} 0 a0 a0

U.S. Patent Feb. 2, 2016 Sheet 16 of 20 US 9,252,811 B2
|
0
F
» o
™
L
b i
o
- E *
* »
» > * *
- & 4", * +
* LR +
*
- *
*
o'
»
» » *
I * <
& L
roven et
* P * o oy
™, o Y
o 3
o | »
i «
&m "
*
N < o'
= * . * & * »
+ * 4
P » & ¥
*7 L PRI D M
™ . o LT
» » ¥ & -
* *> o * *
- . o & o *
gl S P »
o L I R *
* o7 & *
i - *i‘b L -> +»
o 3 & o
*»
‘ ‘

US 9,252,811 B2

Sheet 17 of 20

Feb. 2, 2016

U.S. Patent

{gpl oN/a3

v ¢ : :

9L "0l

“ ¥ ‘f GA
N, ¥R zMu

- 8 RN, o

N N ™,

% f.vq s im ;
G BP0 Y e | > 1? “La, M
D 8pOD UIL @] ~ - ey
0 OpOD YIG M| A!I Iﬁw 34&:‘:;’”&”55&
8 P00 YIG K= | 4, a’w “ b oL T TN e
8 3P0 YAd =@ | ., nﬁ& :
¥ 9POD UTE - e | el e,
¥ OPOD U | . o e o .46 -

T piepums UG et | I S b ol

PIZPURIS YT dc oG |

(O H
t

<
b

NN
£

-

NOMY ‘MSdE 'v/E el 'gLG 19215 suleld eI

o
e

o
A

-
-~

-
-

aley 10417 aweld ‘aley 1013 g

US 9,252,811 B2

Sheet 18 of 20

Feb. 2, 2016

U.S. Patent

apl on/a3

v : z ._

{ 8pos 'IONY- &=
D BP0 TONY e
g P00 JONV-¥- |
¥ 3P00 JONY -

piEpUR:S TONY e

b

;
o)

=
-

=
N

Te
~N

)
(IONY) suoneIa) jo Jsquiny abeisay

&
&

NOMY HSdE F/E 0JRl '9/G 021G el ‘XelyIMA

US 9,252,811 B2

Sheet 19 of 20

Feb. 2, 2016

U.S. Patent

[ap] ON/AZ

A4 8p0OD HAG e

4 2P00 I d—.—

3 2p0d HIG-4-

48P0l Mo~
pIRpURIS g -6
PIEPUEIS "3 o i

1

{Q H
t

v

<

NOMY MSdE P/€ 81l TGl | 1B8ZIS sWeld XeiM

o3
f

N
§

o
b

(o
o«

o
-

o
o

o
-

dley 1oL swield ‘B1eN J04T)Y

U.S. Patent Feb. 2, 2016 Sheet 20 of 20 US 9,252,811 B2

! § """ ﬂ.
T
g ML
T O @
§ 838 :
S 000
z 222 s
. <L <« ‘;i ¥
X % 0 S
o _, *)
0
<
&
o 0
2 RN
e Nz,
. =
0 Z
e L3
A Ll
N
5,
&4
&
o Tol
LL IS
- h e
b
©
=
I vand
| s ; ;
o o o & o &
O < & N -—

(JONY) Suonesa)) jo Jaquiny obelary

US 9,252,811 B2

1

TIME-VARYING LOW-DENSITY
PARITY-CHECK CONVOLUTIONAL CODES

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/494,0006, filed on Jun. 7, 2011, commonly
owned and assigned to the same assignee hereof.

TECHNICAL FIELD

The present disclosure is directed to communication sys-
tems and more specifically to communication devices having
encoder and/or decoder blocks employing Low Density Par-
ity Check Convolutional Codes (LDPC CC).

BACKGROUND

The LDPC CC process utilizes a transposed parity check
matrix (also called “syndrome former”) H?. This matrix is
characterized by sub-matrices H,7(t), each of size cx(c-b),
where b/c is the desired rate of the code, b is equal to the
number of information bits per encoding time instance and ¢
is equal to the number of code bits per encoding time instance.

Typically, a transposed parity check matrix in LDPC-CCs
is semi-infinite. Due to the special characteristics of LDPC-
CC transposed parity check matrices, their semi-infinite
nature and structure, periodically changing matrices are used
in practice.

The same non-zero elements in the matrix, called connec-
tions, are repeated after a period T, and therefore only T time
instances are needed to fully describe an LDPC-CC matrix. In
these T time instances all different variable node connections
and check node connections are present.

The largest i such that H,”(t+i) is a non-zero matrix for
some tis called the syndrome former Memory m,. Each group
of ¢ consecutive rows of the syndrome former corresponds to
a time instance and is called a “phase”.

Conventional LDPC CC techniques do not provide a sys-
tematic way to construct the syndrome former based on
desired Rate (b/c), Memory (m,) and Period (T) while achiev-
ing specific Degree Distribution (d, and d_.), Girth, and
Approximate Cycle Extrinsic Message Degree (AC EMD or
ACE) constraints (0, -z, d,-z) for a desired configuration.

It is desirable for encoders and decoders employed in com-
munication systems and devices and which rely on LDPC
CCs to be configurable with a broader range of adjustable
parameters than previously possible.

SUMMARY

The present disclosure is directed to communication sys-
tems and/or communication devices, and associated methods
of operation thereof, which employ encoder and/or decoder
blocks based on Low Density Parity Check Convolutional
Codes (LDPC CCs).

In accordance with exemplary embodiments, there are
described improved techniques, together with associated
logic blocks, to construct the syndrome former of an LDPC-
CC code in a systematic way based on desired Rate (b/c),
Memory (m,) and Period (T) while achieving specific Degree
Distribution (dv and dc), Girth, and ACE constraints (1.,
d) for a desired configuration.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a high level functional diagram of a communica-
tion system that constructs a syndrome former (SF) H” in
accordance with an exemplary embodiment of the present
invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a diagram illustrating the conventional, well
known structure of a semi-infinite LDPC-CC transposed par-
ity check matrix.

FIG. 3 shows the internal structure of the conventional
exemplary semi-infinite LDPC-CC transposed parity check
matrix shown in FIG. 2.

FIG. 4 is a diagram highlighting the Variable Node Proto-
type Matrix part of the semi-infinite LDPC-CC transposed
parity check matrix of FIG. 3.

FIG. 5 is a diagram highlighting the Check Node Prototype
Matrix part of the semi-infinite LDPC-CC transposed parity
check matrix of FIG. 3.

FIG. 6 is a diagram highlighting the equivalent Block Pro-
totype Matrix part of the semi-infinite LDPC-CC transposed
parity check matrix of FIG. 3.

FIG. 7 shows examples of filling the first sub-matrices for
each phase of the Variable Node Prototype Matrix of FIG. 4.

FIG. 8A is a flow diagram of a process of constructing
LDPC-CC codes according to an exemplary embodiment.

FIG. 8B is a flow diagram of a check procedure for the
construction process of FIG. 8A.

FIG. 9 is a flow diagram for a forced connections routibe
for the construction process of FIG. 8A.

FIG. 10A shows a generalization of the definition of the
elements of the sub-matrices depicted in FIGS. 3-6 for non-
binary LDPC-CC codes.

FIG. 10B shows a generalization of two of the example
scenarios in FIG. 7 for non-binary LDPC-CC codes.

FIG. 11 shows a flow diagram of an algorithm for con-
structing non-binary LDPC-CC codes according to the exem-
plary embodiment of FIGS. 10A-10B.

FIG. 12 is a diagram illustrating the construction of an
LDPC-CC tailbiting matrix.

FIG. 13 is a flow diagram of a process of constructing the
tailbiting matrix of FIG. 12.

FIG. 14 shows an example of a part of a syndrome former
constructed with the process of FIG. 8A.

FIG. 15 is a detailed diagram showing the first phases of the
matrix of FIG. 14, with all allowable permutations.

FIG. 16 is a diagram showing the Bit-Error Rate (BER) and
Frame-Error Rate (FER) for various LDPC-CC codes for
Frame size equal to 576 and code rate 3/4.

FIG. 17 is a diagram showing the Average Number of
Tterations (ANOI) for various LDPC-CC codes for Frame size
equal to 576 and code rate 3/4.

FIG. 18 is a diagram showing the Bit-Error Rate (BER) and
Frame-Error Rate (FER) results for various LDPC-CC codes
for Frame size equal to 1152 and code rate 3/4.

FIG. 19 is a diagram showing the Average Number of
Tterations (ANOI) for various LDPC-CC codes for Frame size
equal to 1152 and code rate 3/4.

DETAILED DESCRIPTION

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration” Any embodiment
described herein as “exemplary” is not necessarily to be con-
strued as preferred or advantageous over other embodiments.

The detailed description set forth below in connection with
the appended drawings is intended as a description of exem-
plary embodiments of the present invention and is not
intended to represent the only embodiments in which the
present invention can be practiced. The detailed description
includes specific details for the purpose of providing a thor-
ough understanding of the exemplary embodiments of the
invention. It will be apparent to those skilled in the art that the
exemplary embodiments of the invention may be practiced

US 9,252,811 B2

3

without these specific details. In some instances, well known
structures and devices are shown in block diagram form in
order to avoid obscuring the novelty of the exemplary
embodiments presented herein.

Those of skill in the art would understand that information
and signals may be represented using any of a variety of
different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols,
and chips that may be referenced throughout the above
description may be represented by voltages, currents, elec-
tromagnetic waves, magnetic fields or particles, optical fields
or particles, or any combination thereof.

The present disclosure is directed to techniques for provid-
ing a systematic way to construct the syndrome former of an
LDPC Convolutional Code (LDPC-CC) based on desired
Rate (b/c), Memory (m,) and Period (T) while achieving
specific Degree Distribution (d, and d_), Girth, and ACE con-
straints (n,z, d,-z) for a desired configuration by using
permuted cxc unit matrices.

FIG. 1 is a high level functional diagram of a communica-
tion system 100 that constructs a syndrome former (SF) H in
accordance with an exemplary embodiment of the present
invention.

Communication system 100 comprises LDPC-CC Con-
struction Engine 105 which is driven by controller 110.
Memory 120 is coupled thereto to facilitate data storage and
retrieval functionality.

LDPC-CC Construction Engine 105 receives and pro-
cesses, under the control of controller 110, a set of inputs
which serve to define parameters associated with desired
properties of syndrome former (SF) H”. The inputs include a
desired coding rate value (b/c), a desired Memory (m,) value,
a desired Period (T) value of the SF, a desired Degree Distri-
bution of the SF, desired ACE (n,.z, d,z) constraints of the
SF, and a desired minimum acceptable Girth value. As shown,
each of the inputs is processed by LDPC-CC Construction
Engine to generate the SF H”.

FIG. 2 is a diagram illustrating the conventional, well
known structure of a semi-infinite LDPC-CC transposed par-
ity check matrix. The “central diagonal” of the matrix is
shown, and its width and height are denoted. The constituting
cx(c-b) sub-matrices are also denoted. The width of the cen-
tral diagonal of the matrix is equal to (c=b)*(m,+1). Simi-
larly, the height of the central diagonal of the matrix is rep-
resented by and equal to c*(m+1).

FIG. 3 shows the internal structure of the conventional
exemplary semi-infinite LDPC-CC transposed parity check
matrix shown in FIG. 2. The notation used for describing the
sub-matrices is shown (inset), and the indices and time
stamps of the sub-matrices in the matrix are also explicitly
shown. The first sub-matrix in each row i is denoted as Hy”
(t+1). The last is denoted as H,, “(t+m_+1). For describing one
whole period, i shall typically Sbelong to a set of integers {0,
T-1}.

The Variable Node Prototype Matrix part of the semi-
infinite LDPC-CC transposed parity check matrix of FIG. 3 is
shown and described, in diagrammatic form, in FIG. 4. As
here illustrated, the height of Variable Node Prototype Matrix
is numerically represented and equal to ¢*T, while the width
of the Variable Node Prototype Matrix is numerically repre-
sented and equal to (c—b)*(m,+T). Given these dimensions,
the area of the given Variable Node Prototype Matrix may be
represented as being of size c*Tx(c-b)*(m+T).

Turning to FIG. 5, here is described and illustrated, in
diagrammatic form, the Check Node Prototype Matrix part of
the semi-infinite LDPC-CC transposed parity check matrix of
FIG. 3. Here, the width and height of the Check Node Proto-

5

10

15

20

25

30

35

40

45

50

55

60

4
type Matrix are represented by c*(m,+T) and (c-b)*T,
respectively. Given these dimensions, the area of the Check
Node Prototype Matrix is represented as being of size ¢*(m +
T)x(c=b)*T.

Turning next to FIG. 6, here is described and illustrated, in
diagrammatic form, a diagram highlighting the Equivalent
Block Prototype Matrix part of the semi-infinite LDPC-CC
transposed parity check matrix of FIG. 3. The width and
height of the Equivalent Block Prototype Matrix are equal to
c*(m+T) and (c-b)*(m+T), respectively. The area in turn of
the Equivalent Block Prototype Matrix is represented as hav-
ing size c*(m+T)x(c-b)*(m+T).

FIG. 7 shows examples of filling the first sub-matrices for
each phase of the Variable Node Prototype Matrix of FIG. 4.
A cxc permuted unit matrix incorporates the first cx(c-b)
sub-matrix. In the examples of FIG. 7 the lower part of the
cx(c-b) sub-matrix is a unit matrix. The first example is a
code with rate equal to 1/4. The second example is a code with
rate equal to 1/2. The third example is a code with a rate equal
to 5/6.

FIG. 8A is a flow diagram of a process of constructing
LDPC-CC codes according to an exemplary embodiment.
The construction method starts with defining the design
parameters (Step 1). For the particular embodiment, the
design parameters and constraints are: Rate, Memory, Period,
Degree Distribution, code Girth larger than 4 and specific
connectivity specifications given in the form of ACE param-
eters.

Having defined the basic design parameters (Rate,
Memory, Period), the precise size of the matrix to be pro-
duced at the output of the process is known, and appropriate
storage is allocated. The outcome of this step is an empty
matrix shell corresponding to the Variable Node Prototype
Matrix of FIG. 4.

The rate and the period fully define the location of sub-
matrices H,’(t) in the Variable Node Prototype Matrix, i.e.,
the first non-zero sub-matrix per phase. These sub-matrices
require connections (Step 2). According to an exemplary
embodiment, randomly permuted cxc unit matrices are
inserted in the cell incorporating H,”(t), whose size is cx(c—
b). In the case where systematic codes with fast encoding
property are desired, these sub-matrices are filled with con-
nections at certain places so that the lowest (c—b)x(c—b) part
of all H,X(t) is a (c=b)x(c—b) unit matrix.

Since the proposed process is based on inserting cxc per-
muted unit matrices, special permutations of the cxc unit
matrix are placed in the cxc cell incorporating H,”(t), whose
size is cx(c—b). These permutations are given by the follow-
ing equation:

{c—l,b/c<0.5 Equation (1)
p =

l-c,b/c=05

where positive values of p denote right-wise column per-
mutation and negative values of p denote left-wise column
permutation.

Atthis point, any other desired connections can be inserted.
One example solution is to place connections at the last pos-
sible cxc cell of columns per phase, in order to “close” the
matrix from the right side. This for example will ensure
connections as far in time as possible, for every phase, for a
given memory value.

Then, an iterative process begins, for each phase up to the
period (Step 3).

US 9,252,811 B2

5

First, the column indices in which possible connections can
be placed are computed for the ¢-th phase, pe{0, T-1} (Step
4), as given in the following equation:

CS={¢(c=b)+1, . .. p(c-b)+(c-b):(m+1)}

The variable node degree for this phase is retrieved, as
originally specified in Step 1, and until the variable node
degree for each phase is fulfilled, connections are placed in
the allowed column indices specified by Equation 2 (Step 5).
The variable node degree simply specifies the number of
connections per row, per phase. For the proposed method, the
¢ rows corresponding to a single phase must have the same
degree, since unit matrices are used, and unit matrices have
only one connection per row. If for phase t, the degree is d,,
then: The first connection per phase has already been placed
in Step 2, so d -1 connections have to be placed, by inserting
d,~1 unit matrices. For each of these connections to be
placed, the same procedure is followed.

In Step 6, a randomly permuted cxc unit matrix is gener-
ated and randomly placed within the column boundaries
defined in Step 4. Random integers, called locations, are
drawn from a set of integer values [c+1, (c—b)x(m+1)-c+1],
using a uniform distribution.

One skilled in the art may appreciate that randomly
selected indices can follow other distributions. Each location
(integer) is translated into a column index in the syndrome
former by assigning the location (integer) value, denoted as
G, to the G-th index in the set shown in Equation (2), and
choosing the corresponding element of this set, denoted as g.
A randomly column permuted cxc unit matrix is placed in the
cell defined by columns [g, . . ., g+c—1] and the ¢ rows for this
phase. The permutation value p is randomly drawn from a set
of integer values [0, . . ., c-1], using a uniform distribution.

One skilled in the art may further appreciate that randomly
selected permutations can follow other distributions. Choos-
ing locations from the aforementioned set avoids the possi-
bility that g defines a cell within the pre-defined connections
of H,”(t), te{0, T-1}, and outside the physical boundaries of
the Variable Node Prototype Matrix.

If the generated connection is considered acceptable based
on the results of a set of checks, then the algorithm continues
to the next connection until the degree is satisfied (Step 5),
and then to the next phase (Step 3).

If the generated connection fails to pass the set of tests
more than a specific number of times, then the procedure
continues to a “forced connections” section (Step 7).

It the algorithm succeeds to find a valid connection in Step
7, then the process is considered successful and the method
continues to Step 5. If the algorithm in Step 7 fails, then the
process starts again from the beginning (Step 8). If a large
number of fails occur, then the process is aborted and the
design parameters need to be re-defined (Step 9).

FIG. 8B is a flow diagram 800 of a check procedure for the
construction process of FIG. 8A. The cxc cell, defined with
reference to the description of the flow chart of FIG. 8A,
cannot fall outside the column boundaries for a specific
phase. The matrix is inspected, to verify that no other con-
nections exist in the cell (steps 805-825). Then, a check is
performed to identify whether the new connection, if inserted,
causes override of the check node degree in the Check Node
Prototype Matrix of FIG. 5 (835). Then, another check is
performed to identify whether the new connection, if inserted,
causes the formation of a cycle of length 2*d in the Equivalent
Block Prototype Matrix of FIG. 6 (840). If all checks are
successful, and no connectivity design checks are required,

Equation (2)

10

15

20

25

30

35

40

45

50

55

60

65

6

the process ends with success (845, 855). If connectivity
design issues are required, then a further check is performed
(850).

For satisfying connectivity design issues, the ACE check
algorithm used in this disclosure is an adaptation of an algo-
rithm proposed by Tian et al. (Selective Avoidance of Cycles
in Irregular LDPC Code Construction, IEEE TRANSAC-
TIONS ON COMMUNICATIONS, VOL. 52, NO. 8,
AUGUST 2004)).

The ACE check algorithm, originally developed for block
codes, detects cycles that are likely contributors to small
stopping sets which are identified and discarded. This method
guarantees that cycles less than a given length 2d , ., contain
at least h, . extrinsic paths, i.e., extrinsic variable nodes
leading away from the cycle, guaranteeing useful message
flow between nodes.

A set S of variable nodes in the Tanner graph is said to form
a stopping set if all its neighbouring check nodes are con-
nected to S at least twice.

The general idea of the ACE detection method is to expand
the tree of nodes as defined in the Tanner graph representation
of the code, to a depth 2d ., starting from a root variable
node, and count the number of extrinsic check nodes up to this
depth. At the end, all cycles less than 2d . have an ACE
value greater than h, .. ACE is a calculable (approximate)
EMD metric, where EMD of a variable-node set is defined as
the number of extrinsic check nodes of this set, and an extrin-
sic check node of a variable-node set is a check node that is
singly connected to this set.

In the modified ACE detection algorithm proposed in the
present disclosure, the Equivalent Block Prototype Matrix of
the syndrome former is used. Only variable nodes belonging
to the Variable Node Prototype Matrix portion of the Equiva-
lent Block Prototype Matrix are considered as rootnodes, i.e.,
variable nodes that have full degree.

The modified ACE detection algorithm starts from a vari-
able node v,. Memory is allocated for storing: i) The ACE
value of every variable node, defined as d,~2; ii) An enumera-
tion variable for each variable node, with two states (ACTIVE
or INACTIVE), indicating if a variable node must be taken
into account; iii) The ACE value of the path from the root node
to each of the variable nodes. This memory is initialized with
o (i.e., unvisited); iv) An enumeration variable for each check
node, with two states (ACTIVE or INACTIVE), indicating if
a check node must be taken into account; v) The ACE value of
the path from the root node to each of the check nodes. This
memory is initialized with o (i.e., unvisited).

We define p(u,) to be the ACE of a path between root node
v, and an arbitrary node p, (it can be either a variable node or
a check node). For ACE values of nodes, ACE(j,)=degree
(u,)-2 if'p, is a variable node, and ACE(u,)=0 if , is a check
node.

The algorithm starts from v, and sets this variable node as
ACTIVE which serves as a parent node. At subsequent depths
up to 2d .z, ACTIVE nodes are considered as parent nodes.
For every parent node in a particular depth, the children nodes
are found, i.e., nodes to which the parent connects to. For each
child node p,, a p,,,,, value is calculated as p(u,)+ACE(u,),
loaded from the appropriate memory elements. If p,,,,,+p
(1,)-ACE(vy)-ACE(u,)<h,, ., then the matrix has surpassed
the ACE design criteria and the algorithm exits with failure,
i.e. the path has ACE value lower than specified. If this is
false, ie. if p,,,,,=zp(1,), then the child node is INACTIVE
with respect to the current parent node. If this is false, then
p(y,) is replaced by p,,,,,,» and the child node is ACTIVE for
the specific parent. The current depth increases, and the pre-
viously child nodes that were ACTIVE are the new parent
nodes. The algorithm continues until there is an exit with
failure, or until the predefined depth is reached.

US 9,252,811 B2

7

The adaptation in this disclosure allows the algorithm to be
performed on LDPC-CCs. The novel feature of the adaptation
is 1) the use of the ACE detection algorithm in the field of
LDPC-CCs; and, inter alia, ii) the use of the ACE check
algorithm on the Equivalent Block Prototype Matrix defined
in FIG. 6.

In one scenario, the root (starting) variable nodes for the
ACE check algorithm are only the nodes belonging to the
Variable Node Prototype Matrix part of the Equivalent Block
Prototype Matrix, i.e., variable nodes shown in the shaded
part of FIG. 4. If the check is successful, the procedure ends
and returns to Step 5. If the check is unsuccessful then the
algorithm goes back to Step 6.

FIG. 9 is a flow diagram for a forced connections routine
900 for the construction process of FIG. 8 A. In a first step, the
check node degree of the matrix is compared to the desired
check node degree to check whether the Check Node Proto-
type Matrix has full check node degree (905, 910). If the
comparison is successful, i.e. the Check Node Prototype
Matrix does not have full check node degree (915), then every
possible column in the column range corresponding to the
current phase is tried (925-990), and for each column, each
possible permutation is tried, using the check procedure
already described with reference to FIG. 8B.

The first connection that satisfies all the checks produces a
pass, and the method exits with success back to Step 5. If all
possible combinations produce a fail, the algorithm exits with
a fail to Step 8.

The aforementioned construction method leads to a poly-
nomial representation of the Variable Node Prototype Matrix,
which can also be extended to a compact matrix notation. The
Variable Node Prototype Matrix is defined as a set of T
polynomials, of up to ¢ variables, of maximum m_+1 ele-
ments each. The elements of the polynomial are denoted as
x;', where ie{0, . . ., m,} denotes the column index at which
the connection resides, with respect to the first variable node
of the phase, and je{0, . . ., c~1} denotes the column permu-
tation value for the cxc unit matrix for this set of connections,
for the specific phase. For example, the polynomial for phase
¢ is denoted as

1

3

c

Py(xo, ... ,xc,1)=z

—1 ms Equation (3)
=0

aj, jx{

i
=3

where a, ={0,1} determines the existing connections.

A similar matrix representation utilizes the delay operator
D to convey the same information in matrix form. Each poly-
nomial is transformed into a polynomial of the delay operator
D, with a straightforward manner, i.e., Py(x)—=P,(D) and
x;/—=D/. The LDPC-CC Variable Node Prototype Matrix is
given by

Equation (4)

ai,jDij
0 =0
Po(D) o1 ms
;o | PRD Dzza‘-dp‘
H (D)= = 20 j=0
D' pr_((D)

10

15

20

25

30

35

40

45

50

55

60

65

8

where a, ={0,1} determines the existing connections. Both
representations are useful in the sense that the Variable Node
Prototype Matrix can be represented in a compact mathemati-
cal formulation, easily placed in written form, and easily
stored in hardware memory elements.

The aforementioned construction method can be extended,
with a small modification, to non-binary LDPC-CC codes.

FIG. 10A shows a generalization of the definition of the
elements of the sub-matrices depicted in FIGS. 3-6 for non-
binary LDPC-CC codes. In the case of non-binary LDPC-CC
codes the matrix H,”(t) is comprised of elements belonging to
GF(2"), veZ+\{0,1}.

FIG. 10B shows a generalization of two of the examples of
FIG. 7 for non-binary LDPC-CC codes. For the specific con-
struction method, cxc cells are defined and each contains ¢
non-zero elements, each of which belongs to GF{2"}\{0}.

The essential difference between the non-binary version of
the construction method and the binary version of the con-
struction method is that, while constructing the Variable Node
Prototype Matrix, binary connections must be replaced by
non-binary connections.

Itis stressed that the replacement of binary with non-binary
elements is performed as the Variable Node Prototype Matrix
is constructed, after the successful placement of a randomly
permuted cxc unit matrix, and not in a bulky way upon the
final result of the binary construction method.

The insertion of non-binary elements is performed after the
acceptance of the binary connections, since non-binary codes
retain the properties of the underlying binary codes. Non-
binary elements (connections) are inserted in the place of
binary connections (elements), by randomly choosing ele-
ments from GF(2")\{0}, veZ+\{0,1}, using a uniform distri-
bution, though other distributions may also be used. This
procedure holds for both the required connections and the
randomly inserted connections.

FIG. 11 shows a flow diagram of an algorithm 1100 for
constructing non-binary LDPC-CC codes according to the
exemplary embodiment of FIG. 10. The algorithm operates
on cxc matrix elements. The algorithm steps are represented
by blocks 1105 to 1135.

FIG. 12 is a diagram illustrating the construction of a
tailbiting matrix. For LDPC-CC codes, the desired frame size
to be sent is denoted by the number of blocks of size ¢ to be
transmitted, denoted as N. N must be larger than the period T.
The part of the syndrome former HY, corresponding to a
frame of size N, is denoted as Hy, . 1]T , and similarly with the
Variable Node Prototype Matrix, has all of its rows in full
expansion, i.e., even the last row has m +1 sub-matrices. The
tailbiting matrix H,, "=, ;" is formed by wrapping the
last m, columns of sub-matrices of H, J\,_I]T to the first m,
columns of sub-matrices of the same matrix. Since encoding
for tailbiting LDPC-CC codes is similar to LDPC-BC encod-
ing, i.e., it is based on matrix multiplication, and a part of H,, ©
must be invertible.

After the construction of a matrix using the method of FIG.
8A, expressed by the resulting Variable Node Prototype
Matrix, a tailbiting matrix is attempted to be constructed, in
the sense that a part of the matrix must be invertible. A range
of frame sizes are used, which involves setting a minimum
and maximum frame size in the close vicinity of the target
frame size, and checking whether the Variable Node Proto-
type Matrix can be used as a tailbiting matrix for frame sizes
between these values with a given step. This involves the
inversion of the specific portion of H,, ” for the specific frame
size. The frame sizes for which the LDPC-CC matrix is
invertible and therefore the tailbiting matrix constructible are
therefore found.

US 9,252,811 B2

9

FIG. 13 is a flow diagram of a routine 1300 of constructing
the tailbiting matrix of FIG. 12. For a given Variable Node
Prototype Matrix, the method scans through a number of
frame sizes until a tailbiting matrix is successfully generated.
The algorithm steps of routine 1300 are explained in greater
detail by the representations given by corresponding blocks
1305 to 1355.

FIG. 14 shows an example of a part of a Variable Node
Prototype Matrix constructed with the process of FIG. 8A. In
this scenario, the Variable Node Prototype Matrix has rate
3/4, m =63, T=30, average d =3 (120 variable nodes with
degree 3), average d =12 (1 check node with degree 9, 2 check
nodes with degree 10, 4 check nodes with degree 11, 12 check
nodes with degree 12, 11 check nodes with degree 13).

FIG. 15 is a detailed diagram showing the first phases of the
matrix of FIG. 14, with all allowable permutations. The four
different possible permutations are explicitly shown.

FIG. 16 is a diagram showing the Bit-Error Rate (BER) and
Frame-Error Rate (FER) for various LDPC-CC codes for
Frame size equal to 576. These are BER and FER results for
an example scenario equivalent to the IEEE 802.16e standard.

Frame size: 576 bits; Rate: 3/4; Modulation format: BPSK.

Code characteristics:

i) Code A:

No ACE detection incorporated; m =63, T=30, average
d,=3 (120 variable nodes with degree 3), average d =12 (1
check node with degree 9, 2 check nodes with degree 10, 4
check nodes with degree 11, 12 check nodes with degree 12,
11 check nodes with degree 13);

i1) Code B:

No ACE detection incorporated; m =63, T=30, average
d,=3 (120 variable nodes with degree 3), average d =12 (1
check node with degree 8, 2 check nodes with degree 9, 8
check nodes with degree 11, 6 check nodes with degree 12, 8
check nodes with degree 13, and 5 check nodes with degree
14);

iii) Code C:

ACE detection incorporated; m =63, T=25, average d =3
(100 variable nodes with degree 3), average d =12 (1 check
node with degree 10, 7 check nodes with degree 11, 8 check
nodes with degree 12, 9 check nodes with degree 13);

iv) Code D:

ACE detection incorporated; m =63, T=20, average d =3
(80 variable nodes with degree 3), average d_=12 (8 check
node with degree 11, 4 check nodes with degree 12, 8 check
nodes with degree 13).

FIG. 17 is a diagram showing the Average Number of
Tterations (ANOI) for various LDPC-CC codes for Frame size
equal to 576. Rate: 3/4; Modulation format: BPSK. The code
characteristics are similar to those in FIG. 16.

FIG. 18 is a diagram showing the Bit-Error Rate (BER) and
Frame-Error Rate (FER) results for various LDPC-CC codes
for Frame size equal to 1152. Rate: 3/4; Modulation format:
BPSK.

Code characteristics:

i) Code A:

No ACE detection incorporated; m =127, T=63, average
d,=3 (252 variable nodes with degree 3), average d =12 (2
check nodes with degree 9, 3 check nodes with degree 10, 13
check nodes with degree 11, 20 check nodes with degree 12,
25 check nodes with degree 13);

i1) Code B:

ACE detection incorporated; m =127, T=63, average d =3
(252 variable nodes with degree 3), average d_=12 (8 check
node with degree 10, 12 check nodes with degree 11, 15 check
nodes with degree 12, 28 check nodes with degree 13).

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 19 is a diagram showing the Average Number of
Tterations (ANOI) for various LDPC-CC codes for Frame size
equal to 1152. Frame size: 1152 bits; Rate: 3/4; Modulation
format: BPSK. The code characteristics are similar to those in
FIG. 18.

Those of skill would further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the embodiments dis-
closed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly illus-
trate this interchangeability of hardware and software, vari-
ous illustrative components, blocks, modules, circuits, and
steps have been described above generally in terms of their
functionality. Whether such functionality is implemented as
hardware or software depends upon the particular application
and design constraints imposed on the overall system. Skilled
artisans may implement the described functionality in vary-
ing ways for each particular application, but such implemen-
tation decisions should not be interpreted as causing a depar-
ture from the scope of the exemplary embodiments of the
invention.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the embodiments dis-
closed herein may be implemented or performed with a gen-
eral purpose processor, a Digital Signal Processor (DSP), an
Application Specific Integrated Circuit (ASIC), a Field Pro-
grammable Gate Array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. A general purpose processor
may be a microprocessor, but in the alternative, the processor
may be any conventional processor, controller, microcontrol-
ler, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors,
one or more microprocessors in conjunction with a DSP core,
or any other such configuration.

The steps of a method or algorithm described in connection
with the embodiments disclosed herein may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module
may reside in Random Access Memory (RAM), flash
memory, Read Only Memory (ROM), Electrically Program-
mable ROM (EPROM)), Electrically Erasable Programmable
ROM (EEPROM), registers, hard disk, a removable disk, a
CD-ROM, or any other form of storage medium known in the
art. An exemplary storage medium is coupled to the processor
such that the processor can read information from, and write
information to, the storage medium. In the alternative, the
storage medium may be integral to the processor. The proces-
sor and the storage medium may reside in an ASIC. The ASIC
may reside in a user terminal. In the alternative, the processor
and the storage medium may reside as discrete components in
a user terminal.

In one or more exemplary embodiments, the functions
described may be implemented in hardware, software, firm-
ware, or any combination thereof. If implemented in soft-
ware, the functions may be stored on or transmitted over as
one or more instructions or code on a computer-readable
medium. Computer-readable media includes both computer
storage media and communication media including any
medium that facilitates transfer of a computer program from
one place to another. A storage media may be any available
media that can be accessed by a computer. By way of
example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic

US 9,252,811 B2

11

storage devices, or any other medium that can be used to carry
or store desired program code in the form of instructions or
data structures and that can be accessed by a computer. Also,
any connection is properly termed a computer-readable
medium. For example, if the software is transmitted from a
website, server, or other remote source using a coaxial cable,
fiber optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are included in the definition of medium. Disk and disc, as
used herein, includes compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk and blue-ray
disc where disks usually reproduce data magnetically, while
discs reproduce data optically with lasers. Combinations of
the above should also be included within the scope of com-
puter-readable media.

The previous description of the disclosed exemplary
embodiments is provided to enable any person skilled in the
art to make or use the present invention. Various modifica-
tions to these exemplary embodiments will be readily appar-
ent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the invention. Thus, the
present invention is not intended to be limited to the embodi-
ments shown herein but is to be accorded the widest scope
consistent with the principles and novel features disclosed
herein.

What is claimed is:

1. In a device for generating a Variable Node Prototype
Matrix for a semi-infinite transposed parity check matrix H”,
defined as Syndrome Former (SF), of an LDPC-convolutional
code (LDPC-CC), a method of generating the Variable Node
Prototype Matrix for the SF based on a set of predefined
parameters including Rate (b/c), Memory (m,) and Period (T)
and a set of predefined constraints including Variable and
Check Node Degree Distribution (d,, and d,.), Girth and ACE
(0ycp dycr), where ACE is Approximate Cycle Extrinsic
Message Degree, b is the number of information bits per
encoding time instance, and ¢ is the number of code bits per
encoding time instance and an integer no less than 2, the
method comprising:

defining an empty Variable Node Prototype Matrix shell

having T number of phases (t), each phase t comprising
of ¢ rows and (c-b)x(m +1) columns;

generating cxc cells of each phase t, te{0, T-1};

defining a cxc permuted unit matrix corresponding to the

generated cxc cells of each phase; and

randomly inserting the cxc permuted unit matrices in the

positions of the cxc empty cells at each phase of the
empty Variable Node Prototype Matrix shell until the set
of the predefined parameters and the set of predefined
constraints are satisfied, thereby generating the Variable
Node Prototype Matrix for the SF.

2. The method of claim 1, where the Variable Node Proto-
type Matrix is comprised of binary connections.

3. The method of claim 2, further comprising replacing
each binary connection with a non-binary connection to gen-
erate a non-binary Variable Node Prototype Matrix.

4. The method of claim 3, where the lower left (c—b)x(c-b)
unit sub-matrix of the first cxc cells of each phase t is a unit
matrix and the LDPC-CC is a systematic code.

5. A device for generating a Variable Node Prototype
Matrix for a semi-infinite transposed parity check matrix H”,
defined as syndrome former (SF) of an LDPC-convolutional
code (LDPC-CC), the device comprising:

10

20

25

30

35

40

45

50

55

60

65

12

means for receiving a set of predefined parameters includ-
ing Rate (b/c), Memory (m,) and Period (T), and a set of
predefined constraints including Variable and Check
Node Degree Distribution (d,, and d_), Girth and ACE
(0ycp dycr) values, where ACE is Approximate Cycle
Extrinsic Message Degree, b is the number of informa-
tion bits per encoding time instance, and ¢ is the number
of code bits per encoding time instance and an integer no
less than 2;

means for defining an empty Variable Node Prototype
Matrix shell having T number of phases (t), each phase
t comprising of ¢ rows and (c-b)x(m,+1) columns;
means for generating cxc cells of each phase t, te {0, T-1};
means for defining a cxc permuted unit matrix correspond-
ing to the generated cxc cells of each phase; and

means for outputting the Variable Node Prototype Matrix
for the SF by randomly inserting the cxc permuted unit
matrices in the positions of the cxc empty cells at each
phase of the empty Variable Node Prototype Matrix shell
until the received set of the predefined parameters and
the received set of predefined constraints are satisfied,
thereby generating the Variable Node Prototype Matrix
for the SF.

6. A device for generating a Variable Node Prototype
Matrix for a semi-infinite transposed parity check matrix H”,
defined as Syndrome Former (SF) of an LDPC-convolutional
code (LDPC-CC) based on a set of predefined parameters
including Rate (b/c), Memory (m,) and Period (T) and a set of
predefined constraints including Variable and Check Node
Degree Distribution (d, and d), Girth and ACE (n,z, d,-2),
where ACE is Approximate Cycle Extrinsic Message Degree,
b is the number of information bits per encoding time
instance, and ¢ is the number of code bits per encoding time
instance and an integer no less than 2, the device comprising:

means for defining an empty Variable Node Prototype

Matrix shell having T number of phases (t), each phase
t comprising of ¢ rows and (c-b)x(m,+1) columns;
means for generating cxc cells of each phase t, te {0, T-1};
means for defining a cxc permuted unit matrix correspond-
ing to the generated cxc cells of each phase; and

means for randomly inserting the cxc permuted unit matri-
ces in the positions of the cxc empty cells at each phase
of the empty Variable Node Prototype Matrix shell until
the set of the predefined parameters and the set of pre-
defined constraints are satisfied, thereby generating the
Variable Node Prototype Matrix for the SF.
7. A device for generating a Variable Node Prototype
Matrix for a semi-infinite transposed parity check matrix H”,
defined as syndrome former (SF) of an LDPC-convolutional
code (LDPC-CC), the comprising:
means for storing a set of predefined parameters including
Rate (b/c), Memory (m,) and Period (T) and a set of
predefined constraints including Variable and Check
Node Degree Distribution (d,, and d.), Girth and ACE
(0ycp dycr), where ACE is Approximate Cycle Extrin-
sic Message Degree, b is the number of information bits
per encoding time instance, and ¢ is the number of code
bits per encoding time instance and an integer no less
than 2;

means for defining an empty Variable Node Prototype
Matrix shell having T number of phases (t), each phase
t comprising of ¢ rows and (c-b)x(m,+1) columns;

means for generating cxc cells of each phase t, te {0, T-1};

means for defining a cxc permuted unit matrix correspond-

ing to the generated cxc cells of each phase; and
means for randomly inserting the cxc permuted unit matri-
ces in the positions of the cxc empty cells at each phase

US 9,252,811 B2

13

of'the empty Variable Node Prototype Matrix shell until
the set of the predefined parameters and the set of pre-
defined constraints are satisfied to thereby generate the
Variable Node Prototype Matrix for the SF.

8. The device of claim 7, further comprising means for
multiplying a received codeword with the syndrome former
to identify a valid codeword.

9. The device of claim 7, where the Variable Node Proto-
type Matrix is comprised of binary connections.

#* #* #* #* #*

10

14

